Practical Skills for Navigating the Crisis

Detecting low credibility research and doing high credibility research
Noah Jones
1/13/2021
MAS.S73
Nine circles of scientific hell

I Limbo
II Overselling
III Post-Hoc Storytelling
IV P-Value Fishing
V Creative Outliers
VI Plagiarism
VII Non-Publication
VIII Partial Publication
IX Inventing Data

Spectrum of impact to scientific career

Neuro sceptic et al. 2012
Factors leading to replication failures

I. Uncommon

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Factors leading to replication failures

I. Uncommon

II. Common, but not primary culprit

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Factors leading to replication failures

I. Uncommon

II. Common, but not primary culprit

III. Very common

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Factors leading to replication failures

I. Uncommon

Fraud

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Factors leading to replication failures

I. Uncommon

Fraud

II. Common, but not primary culprit

File-drawering failed studies
Innocent Errors
Insufficient power

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Factors leading to replication failures

I. Uncommon
Fraud

II. Common, but not primary culprit
File-drawering failed studies
Innocent Errors
Insufficient power

III. Very common
P-hacking

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Methods to tackle each potential problem

I. Uncommon

- Cataloguing publications that need to be retracted
- Disclosure of all data and materials
- Fraud detection flags

II. Common, but not primary culprit

III. Very common

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Methods to tackle each potential problem

I. Uncommon

- Cataloguing publications that need to be retracted
- Disclosure of all data and materials
- Fraud detection flags

II. Common, but not primary culprit

- Pre-registration & Journal acceptance
- Statistical checks
- Power analysis

III. Very common

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Methods to tackle each potential problem

I. Uncommon

Cataloguing publications that need to be retracted
Disclosure of all data and materials
Fraud detection flags

II. Common, but not primary culprit

Pre-registration & Journal acceptance
Statistical checks
Power analysis

III. Very common

Meta-Statistics
(Pre-registration/Registered reports)

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Publication Transparency Databases

Publication Meta Data
Pre-registration
Data and Materials
Publication Transparency Databases

Publication Meta Data
Pre-registration
Data and Materials
Retractions
Publication Transparency Databases

Publication Meta Data
 Pre-registration
 Data and Materials
Retractions
Replications
Publication Transparency Databases

Publication Meta Data
 Pre-registration
 Data and Materials
Retractions
Replications
Commentary
Meta Data: Open Science Foundation

http://osf.io
Discover public research
Discover projects, data, materials, and collaborators on OSF that might be helpful to your own research.

Search discipline, author...

How OSF supports your research

Search and Discover
Find papers, data, and materials to inspire your next research project. Search public projects to build on the work of others and find new collaborators.

Design Your Study
Start a project and add collaborators, giving them access to protocols and other research materials. Built-in version control tracks the evolution of your study.

Collect and Analyze Data
Store data, code, and other materials in OSF Storage, or connect your Dropbox or other third-party account. Every file gets a unique, persistent URL for citing and sharing.

Publish Your Reports
Share papers in OSF Preprints or a community-based preprint provider, so others can find and cite your work. Track impact with metrics like downloads and view counts.
Meta Data: Open Science Foundation
Retractions: Retraction Watch

http://www.retractionwatch.com

30K Retractions in Database
Replications:

Forrt

Framework for Open and Reproducible Research Training
Replications:

Forrt
Data Replicada
Replications:

Forrt
Data Replicada
Multi-Lab Groups

Registered Replication Report

Many Labs 2: Investigating Variation in Replicability Across Samples and Settings
Commentary: PubPeer

http://Pubpeer.com

The PubPeer database contains all articles. Search results return articles with comments.

Search for DOI, PMID, arXiv ID, keyword, author, etc.

To leave the first comment on a specific article, paste a unique identifier such as a DOI, PubMed ID, or arXiv ID into the search bar.
Commentary: PubPeer

Tonic inhibition enhances fidelity of sensory information transmission in the cerebellar cortex

Journal of Neuroscience (2012) - 6 Comments

Ian Duguid, Tiago Branco, Michael London, Paul Chadderton, Michael Häusser

#1 Peer 1 commented December 2012

It is surprising to see in figure 2 that sensory input provides neither feed-forward nor feedback inhibition onto granule cells. Does this suggest that the Golgi cell's role in the circuit is only to set the amplitude of tonic inhibition?
Commentary: Curate Science

http://curatescience.org

Every year, millions of people suffer and/or die from serious conditions like cancer, Alzheimer's, heart disease, anxiety/mood disorders, and suicide. To make progress on these and other problems, funded scientific research must be, at minimum, transparent and credible (credible research is transparent evidence that survives scrutiny from peers). Transparent and credible evidence can then be built upon, which allows ever more precise theories/hypotheses to be tested (solid cumulative knowledge cannot be built on quicksand). Sadly, there is a growing body of compelling evidence that a great deal of current academic research (if not the majority1, 2) is neither minimally transparent nor credible1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16. Worse, there's no systematic way to differentiate credible evidence from untrustworthy evidence.

Curate Science is an integrated system and curation platform to verify that research is transparent and credible (for a visual overview, see hyperlinked diagram). It will allow researchers, journals, universities, funders, teachers, journalists, and the general public to ensure:

1. Transparency: Ensure research meets minimum transparency standards appropriate to the article type and employed methodologies.
2. Credibility: Ensure follow-up scrutiny is linked to its parent paper, including critical commentaries, reproducibility/robustness re-analyses, and new sample replications.

This will ensure that researchers, journals, universities, and funders are accountable to the people they serve. A unified platform to differentiate credible evidence (from untrustworthy evidence) will substantially accelerate the development of cumulative scientific knowledge and applied innovations across the natural and social sciences. The implications for human welfare are large.
FOR AUTHORS

Organize your publications on your own Curate Scholar author page to make your science deliciously user-friendly, ultimately accessible, and beautiful on all devices (example author pages: 1, 2, 3).

View full-text PDF and HTML versions of your articles directly within your author page.

Expose key figures in your publication list so your readers can jump directly into your research via a delightful touch-enabled media viewer.

Curate links to associated content to save your reader and yourself time (e.g., URLs to open data, talks/videos).

CREATE AUTHOR PAGE
Commentary: Curate Science

Make your researchers’ publications easy to access, interactive, and deliciously user-friendly to consume on your university’s departmental pages.

Track the open science practices of your researchers, and monitor your progress in achieving transparency targets prioritized by your institution (see interactive prototype).

University departments can then be ranked by their transparency track record, which graduate students and job candidates can use to inform their decisions at what university to work.
Commentary: Curate Science

Make your grantees' research outputs easy to access, interactive, and deliciously user-friendly to consume for all research stakeholders (e.g., policy analysts, innovators, citizens, etc.).

Track the transparency of the research you fund, and monitor your progress in requiring higher levels of research transparency (see interactive prototype).

Monitor your progress in funding a larger proportion of studies that report independent replications and reproducibility re-analyses.
Commentary: Curate Science

FOR REPLICATORS

Is cleanliness next to godliness? Dispelling old wives’ tales:
Failure to replicate Zhong and Liljenquist (2010)

Two conceptual replications of research by Zhong and Liljenquist (2010) are reported. The conceptual replications were carried out by two independent laboratories that did not collaborate or communicate with one another about the current studies. Study 1 (N = 217) replicated a study by Zhong and Liljenquist (2010) showing that participants who recalled their own unusual behavior expressed a heightened desire to physically cleanse themselves with the addition of an assessment of personality traits. Study 2 (N = 116) replicated a second study. More...

Replication Details

Methodological details include measures used and methods used. These features may be useful for adding meta-analytic data (coming soon).

Fager et al. (2000) Study 1 XE
Garcia et al. (2013) Study 3 XE

Link your replication to the original study to increase its visibility, discoverability, and impact, accelerating scientific self-correction.

Curate replication metadata on its own article page and easily share it.

Create collections of replications across different methods of testing an effect, and meta-analyze and track replication evidence (coming soon).
Fraudulent and inconsistent Data

Numerical Tests
GRIM Test

The GRIM test: A simple technique detects numerous anomalies in the reporting of results in psychology

Nicholas J L Brown¹, James A J Heathers²
Fraudulent and inconsistent Data

Numerical Tests
 GRIM Test

Image Manipulation
 Adobe Bridge and ImageJ
Fraudulent and inconsistent Data

Numerical Tests
- GRIM Test

Image Manipulation
- Adobe Bridge and ImageJ

Stat checking
- Statcheck.io
Methods to tackle each potential problem

I. Uncommon

- Cataloguing publications that need to be retracted
- Disclosure of all data and materials
- Fraud detection flags

II. Common, but not primary culprit

- Pre-registration & Journal acceptance
- Statistical checks
- Power analysis

III. Very common

- Meta-Statistics

(Pre-registration/Registered reports)

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Preregistration

Separates Hypothesis Generating (Exploratory Research)

Hypothesis-testing (Confirmatory Research)
What is a preregistration

Research plan
- Time-stamped
- Immutable or read-only
- Created before the study
- Submitted to public registry
Benefits of Preregistration

Can protect against natural biases and selective reporting
Great tool for communicating work with others
More robust planning
Helpful reminder of what you plan
What does it contain

Study Plan
- Hypothesis
- Data collection procedures
- Manipulated and measured variables

Analysis Plan
- Statistical model
- Inference criteria
Examples of preregistration

https://osf.io/h9k8n/
OSF Preregistration Templates

https://osf.io/zab38/wiki/home/
Problems with preregistration

How to Crack Pre-registration: Toward Transparent and Open Science (Yamada et al. 2018)

Yamada argues to deal with these challenges we should have journals for experimental or confirmatory research and theoretical or exploratory research.
Registered Reports

A stronger preregistration

“Registered Reports eliminates the bias against negative results in publishing because the results are not known at the time of review.”

-- Daniel Simons, Professor at University of Illinois, Urbana-Champaign, co-editor of Registered Replication Reports at Perspectives on Psychological Science, and incoming chief editor of Advances in Methods and Practices in Psychological Science

“Because the study is accepted in advance, the incentives for authors change from producing the most beautiful story to the most accurate one.”

--Chris Chambers, Professor at Cardiff University, Section Editor for Registered Reports at Cortex, European Journal of Neuroscience and Royal Society Open Science, Chair of the Registered Reports Committee supported by the Center for Open Science
Resources

https://aspredicted.org/
https://osf.io/prereg/
https://www.cos.io/blog/preregistration-plan-not-prison
https://cos.io/prereg
https://www.cos.io/initiatives/registered-reports (Database of journals accepting registered reports)

Transparent and Reproducible Social Science Research: How to Do Open Science (Christensen et al.)
Power Analysis:
Possible conclusions from a test

<table>
<thead>
<tr>
<th>Judgment of Null (Statistical Result)</th>
<th>Null Hypothesis (H_0) is:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0 ($p < .05$)</td>
<td>True</td>
</tr>
<tr>
<td>Fail to reject H_0 ($p > .05$)</td>
<td>False</td>
</tr>
</tbody>
</table>

Citation of material: OSF
Possible conclusions from a test

<table>
<thead>
<tr>
<th>Null Hypothesis (H_0) is:</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0 ($p < .05$)</td>
<td></td>
<td>Type I Error False Positive α</td>
</tr>
<tr>
<td>Fail to reject H_0 ($p > .05$)</td>
<td>Correct Inference True Negative</td>
<td></td>
</tr>
</tbody>
</table>
Possible conclusions from a test

<table>
<thead>
<tr>
<th>Null Hypothesis (H₀) is:</th>
<th>True</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H₀</td>
<td>Type I Error</td>
<td>Correct Inference</td>
</tr>
<tr>
<td>(p < .05)</td>
<td>False Positive α</td>
<td>True Positive (1 – β)</td>
</tr>
<tr>
<td>Fail to reject H₀</td>
<td>Correct Inference</td>
<td>Type II Error</td>
</tr>
<tr>
<td>(p > .05)</td>
<td>True Negative</td>
<td>False Negative β</td>
</tr>
</tbody>
</table>
Possible conclusions from a test

Power

<table>
<thead>
<tr>
<th>Judgment of Null (Statistical Result)</th>
<th>Null Hypothesis (H_0) is:</th>
<th>False</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reject H_0 ($p < .05$)</td>
<td>True</td>
<td>Type I Error False Positive α</td>
</tr>
<tr>
<td>Fail to reject H_0 ($p > .05$)</td>
<td>Correct Inference True Positive $(1 - \beta)$</td>
<td>False Negative β</td>
</tr>
</tbody>
</table>

- **Type I Error**: False Positive α (Reject a true null hypothesis)
- **Type II Error**: False Negative β (Fail to reject a false null hypothesis)
- **Correct Inference**: True Positive $(1 - \beta)$, True Negative
What is Power

Probability to reject the null hypothesis \((H_0) \) is False given that it is False

80% Power means have an 80% chance of getting significant result when effect is true

Based on effect size, sample size and alpha level
Why is Power important?: Problems with Low Power

- Increased likelihood of **false negative**
- **Inflated effect size** when significance is there
- **Lower positive predictive value** (true positives)
False Negatives

The lower the power of your study, the more likely you’ll find a false negative

E.X not finding an average differences in height between men and women
Inflated Effect Size

Samples drawn from population given effect size is distributed around true effect size

Power of studies does not affect distribution mean, but the shape and areas of significance in distribution
Distribution Shape

30% Power

90% Power
Significant Effect Sizes

30% Power

90% Power
Inflated Effect Sizes

As studies become more underpowered, only tails of distribution will reach statistical significance
 Leads to extreme inflation as power decreases
Inflated Effect Sizes

We can overestimate the effectiveness of our treatments.

It is difficult to properly power future studies based on past research (true power of a study using effect size from previous is likely lower than power analysis would suggest).
Positive Predictive Value

Probability that a positive result represents a true positive
Effect is real in the population

\[
PPV = \frac{(1 - \beta) \times OR}{[(1 - \beta) \times OR] + \alpha}
\]

- OR: Odds that our hypothesis is true
- \((1 - \beta)\): Power
- \(\alpha\): Alphas level
Button, Ioannidis, Mokrysz, Nosek, Flint, Robinson, & Munafo (2011)
Intro to Power Analysis

Specify alpha level and power level
Usually set it to 0.05 and power to 0.80
Intro to Power Analysis

Specify alpha level and power level
 Usually set it to 0.05 and power to 0.80
Get mean test scores between two groups
Intro to Power Analysis

Specify alpha level and power level
 Usually set it to 0.05 and power to 0.80
Get mean test scores between two groups
Compute expected effect size (Cohen’s D or R)
 Get N Values of two samples
 Get standard deviations of scores
 Means of scores
Power Calculators

G-Power
R Statsmodels
Python Statsmodels
Computing the Sample Size for T test

```python
# import required modules
from math import sqrt
from statsmodels.stats.power import TTestIndPower

# calculation of effect size
# size of samples in pilot study
n1, n2 = 4, 4

# variance of samples in pilot study
s1, s2 = 5**2, 5**2

# calculate the pooled standard deviation
# (Cohen’s d)
s = sqrt(((n1 - 1) * s1 + (n2 - 1) * s2) / (n1 + n2 - 2))

# means of the samples
u1, u2 = 90, 85

# calculate the effect size
d = (u1 - u2) / s
print(f'Effect size: {d}')

# factors for power analysis
alpha = 0.05
power = 0.8

# perform power analysis to find sample size
# for given effect
obj = TTestIndPower()
n = obj.solve_power(effect_size=d, alpha=alpha, power=power,
                   ratio=1, alternative='two-sided')
print(f'Sample size/Number needed in each group: {n:.3f}')
```

Effect size: 1.0
Sample size/Number needed in each group: 16.715
Computing the Power for T Test

```python
from statsmodels.stats.power import TTestPower

power = TTestPower()
n_test = power.solve_power(nobs=40, effect_size = 0.5,
                          power = None, alpha = 0.05)
print('Power: {:.3f}'.format(n_test))
```

Power: 0.869
Samples vs. Power for different effect sizes

```python
# import required libraries
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.stats.power import TTestIndPower

# power analysis varying parameters
effect_sizes = np.array([0.2, 0.5, 0.8, 1.3])
sample_sizes = np.array(range(5, 100))

# plot power curves
obj = TTestIndPower()
obj.plot_power(dep_var='nobs', nobs=sample_sizes,
               effect_size=effect_sizes)

plt.show()
```
Other resources

Preregistration and power analysis:

Best Practices for Transparent Social Science
Methods to tackle each potential problem

I. Uncommon

- Cataloguing publications that need to be retracted
- Disclosure of all data and materials
- Fraud detection flags

II. Common, but not primary culprit

- Pre-registration & Journal acceptance
- Statistical checks
- Power analysis

III. Very common

- Meta-Statistics

 (Pre-registration/Registered reports)

 False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
P-Curve: A Key to the File Drawer”

Simonsohn, Nelson and Simmons (2014)

Focus on the distribution of p-values < .05

Look at “evidential value” of “form of” p-hacking

Empirical simulation
P-Curve: A Key to the File Drawer

Tests are more likely to be published when they are statistically significant
P-Curve: A Key to the File Drawer

Tests are more likely to be published when they are statistically significant.
P-curve can test for presence or lack of evidential value but not prove that the theory is supported.
P-Curve: A Key to the File Drawer

Tests are more likely to be published when they are statistically significant.

P-curve can test for presence or lack of evidential value but not prove that the theory is supported.

Uses only p-values < .05.
Distribution of P-values under “no effect” (d=0)
-> Uniform Distribution

Distribution of P-values with an effect (d>0) -> Right-skewed distribution
What happens when we increase power?

Distribution of P-values under “no effect” (d=0)
- Uniform Distribution

Distribution of P-values with an effect (d>0) -> Right-skewed distribution
Distribution of P-values under “no effect” (d=0)
-> Uniform Distribution

Distribution of P-values with an effect (d>0) -> Right-skewed distribution
Distribution of P-values under “no effect” (d=0)
-> Uniform Distribution

Distribution of P-values with an effect (d>0) -> Right-skewed distribution
Distribution of P-values under “no effect” (d=0)
-> Uniform Distribution

Distribution of P-values with an effect (d>0) -> Right-skewed distribution
What happens with p-hacking

P curve where they applied an early stopping rule (p-hacking)
P-curve of a psychology journal with suspected p-hacking
Answers questions

A) Does the p-value look like one where there is an effect or there is no effect? (right-skew)
 Compute termed ‘pp value’ with null
 Use Fisher’s method on pp values

B) Is there enough power to detect an effect from this literature?
 Compute ‘pp value’ with 33% power
 Use Fisher’s method on pp values

C) ‘Half curve’ formulation with p < .025
How to conduct a p-curve analysis for homework

<table>
<thead>
<tr>
<th>Paper 1</th>
<th>Evidential Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper 2</td>
<td>Effect size</td>
</tr>
<tr>
<td>Paper 3</td>
<td>‘Better P-curves’ (robustness)</td>
</tr>
<tr>
<td>The online app 4.0</td>
<td></td>
</tr>
<tr>
<td>The User Guide</td>
<td></td>
</tr>
<tr>
<td>Supp Materials</td>
<td></td>
</tr>
</tbody>
</table>

P-curve.com
How to conduct a p-curve analysis for homework

<table>
<thead>
<tr>
<th>Paper A</th>
<th>Paper 2</th>
<th>Paper 3</th>
<th>The online app 4.0</th>
<th>The User Guide</th>
<th>Supp Materials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evidential Value</td>
<td>Effect size</td>
<td>'Better P-curves' (robustness)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Paper A

Paper 2

Paper 3

The online app 4.0

The User Guide

Supp Materials

P-curve.com
P-curve app

p-curve app 4.06
How has the app changed? See summary.

Highlights of user guide:
1) Not all p-values in a paper are selected, only those testing hypotheses of interest (See Table 3 in paper/user-guide).
2) In a 2x2 experimental design:
 - If an effect is predicted to attenuate, the p-value of the interaction is selected.
 - If an effect is predicted to reverse, the p-value of both simple effects are selected.
3) If you make a p-curve public, report a P-curve Disclosure Table (see Table 2 in paper/user-guide for an example).

Questions about p-curve? Email User, Leif, or Doc.

Enter your tests:
Go ahead. Replace the examples.

- $t(88)=2.1$
- $r(147)=.246$
- $F(1,180)=9.1$
- $f(3,218)=4.45$
- $z=3.45$
- $chisq(1)=9.1$
- $r(77)=.47$
- $chisq(2)=8.74$

Make the p-curve
P-curve guidelines

Step 1. Create a study-selection rule

P-curve can be used to assess the evidential value of diverse sets of findings.

If a rule can be specified that creates a meaningful set of studies, then p-curve can validly assess the set’s joint evidential value.

The rule should be set in advance, before statistical results are analyzed, and disclosed in the paper.

Examples of rules:
• The yearly top-5 most cited articles in the Quarterly Research Journal 1984-1989
• All studies published in 2009 with wine as a manipulation and simulated driving behavior as a dependent variable.
• The most recent 10 articles published by proctologist Giordano Armani.
• Clinicaltrials.gov registered studies examining antidepressants among teenagers.

P-curve guidelines

Step 2. Create a *P*-curve Disclosure Table to select results to analyze

Table 1 summarizes the steps for creating a disclosure table. Table 2 provides an example.

Table 1. Five Steps to Create a *P*-curve Disclosure Table

<table>
<thead>
<tr>
<th>Step 1</th>
<th>Identify researchers’ stated hypothesis and study design quoting from paper</th>
<th>(Columns 1 & 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 2</td>
<td>Identify the statistical result testing stated hypothesis using Table 3</td>
<td>(Column 3)</td>
</tr>
<tr>
<td>Step 3</td>
<td>Report the statistical results of interest quoting from paper</td>
<td>(Column 4)</td>
</tr>
<tr>
<td>Step 4</td>
<td>Recompute the precise p-value(s) based on reported test statistics</td>
<td>(Column 5)</td>
</tr>
<tr>
<td>Step 5</td>
<td>Report robustness results</td>
<td>(Column 6)</td>
</tr>
</tbody>
</table>
Table 3 in paper. Which statistical result to select for \textit{p}-curve?

<table>
<thead>
<tr>
<th>DESIGN</th>
<th>EXAMPLE</th>
<th>WHICH RESULT TO INCLUDE IN MAIN P-CURVE</th>
<th>WHICH RESULT TO INCLUDE IN ROBUSTNESS TEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-Cell</td>
<td>Examining how math training affects math performance</td>
<td>Linear trend</td>
<td>High vs. low comparison</td>
</tr>
<tr>
<td>High</td>
<td>60 minutes of math training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium</td>
<td>30 minutes of math training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low</td>
<td>5 minutes of math training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td>60 minutes of math training</td>
<td>Treatment vs. Control 1</td>
<td>Treatment vs. control 2</td>
</tr>
<tr>
<td>Control 1</td>
<td>60 minutes of unrelated training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control 2</td>
<td>No training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Treatment 1</td>
<td>60 minutes of math training, start with easy questions</td>
<td>Treatment 1 vs. Control</td>
<td>Treatment 2 vs. Control</td>
</tr>
<tr>
<td>Control 2</td>
<td>No training</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x2 DESIGN</td>
<td>Examining how season interacts with being indoors vs. outdoors to affect sweating</td>
<td>2x2 Interaction</td>
<td></td>
</tr>
<tr>
<td>Attenuated Interaction</td>
<td>Always sweat more in summer, but less so when indoors.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reversing Interaction</td>
<td>Sweat more in summer than winter when outdoors, but more in winter than in summer</td>
<td>Both simple effects</td>
<td></td>
</tr>
<tr>
<td>3x2 DESIGN</td>
<td>Examining how season interacts with math training to affect math performance</td>
<td>Difference in linear trends</td>
<td>2x2 interaction for high vs. low</td>
</tr>
<tr>
<td>Attenuated Trends</td>
<td>More math training (60 vs. 30 vs. 5 minutes) leads to better performance always, but more in winter than in summer</td>
<td>Both linear trends</td>
<td>Both high vs. low comparisons</td>
</tr>
<tr>
<td>Reversing Trends</td>
<td>More math training (60 vs. 30 vs. 5 minutes) leads to better performance in winter, but worse performance in summer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2x2x2 DESIGN</td>
<td>Examining how gender and season interact with being indoors vs. outdoors to affect sweating</td>
<td>Three-way interaction</td>
<td></td>
</tr>
<tr>
<td>Attenuation of attenuated interaction</td>
<td>Both men and women sweat more in summer than winter, but less so when indoors. This attenuation is stronger for men than for women.</td>
<td>Three-way interaction</td>
<td></td>
</tr>
<tr>
<td>Reversal of attenuated interaction</td>
<td>Men sweat more in summer than winter, but less so when indoors. Women also sweat more in summer than winter, but more so when indoors.</td>
<td>Both two-way interactions</td>
<td></td>
</tr>
<tr>
<td>Reversal of reversing interaction</td>
<td>Men sweat more in summer than winter when outdoors, but more in winter than in summer when indoors. Women sweat more in winter than summer when outdoors, but more in summer than winter when indoors.</td>
<td>All four simple effects</td>
<td></td>
</tr>
</tbody>
</table>

Keep in mind:

1. **In a 2x2 design,**
 - If attenuation is predicted, select only the interaction
 - If a reversal is predicted, select only both simple effects

2. **Discrete tests.**
 - \textit{P}-curve is only approximately valid for discrete tests (e.g., comparing proportions). \textit{P}-curves of discrete tests are, for now, merely suggestive.
 - See Supplement #4.
P-curve guidelines

To check heterogeneity in your estimate, use R package dmetar.pcurve*

https://dmetar.protectlab.org/reference/pcurve.html
P-curve guidelines

Step 4: Report all output on paper
Problems with P-curve

Heterogeneity of effect sizes

Can’t use with tests of discrete data (using Chi Square test, F test)

Interpreting the average power and effect size of the estimate is problematic

Average Power: A Cautionary Note (McShane et al.)

Disclosure of studies is very important

Categorical sin of P values (professor priming research)

Professor Priming discussion
Problems with P-Curve

Gelman take from blog:

“McShane et al. and Simonsohn et al. that these methods should be thought of as methods of demonstrating how bad the selection bias can be in a literature, under best-case assumptions, rather than as a method of estimating underlying effect sizes. Thus, I can see how the observed distribution of p-values can be helpful to look at, if for no other reason than to reveal problems with naive interpretations of published p-values”
Problems with P-curve

Gelman take from blog:

“general view that all these tools are most useful as a sort of rhetorical approach to show how bad things can be, even in the best-case scenario.

I get concerned, though, if people take these methods too literally. Consider the classic file-drawer-effect paper by Rosenthal, which I assume was written to demonstrate how serious this selection problem can be, but is sometimes twisted around to give the opposite meaning (by doing the calculation of how many papers would need to have been discarded to be consistent with a particular pattern of published results, and then claiming that since no such massive “file drawer” exists, the published claims should be accepted). I wouldn’t want researchers to take p-curve, or the Hedges approach, as evidence that a literature of uncontrolled p-values is approximately just fine.

As is often the case, I find myself more convinced by the demonstration of bias than by the attempted bias correction. In that sense, I see the Hedges procedure, or p-curve, or p-uniform, as being comparable to Type M and Type S errors (Gelman and Tuerlinckx, 2000) as a way of quantifying some effects of selection bias in statistical inference, but the desired solution is to go back to the original, unselected, data. All these methods can be useful in giving us a sense of the scale of bias arising in idealized situations.”
Other meta-analytic estimates to supplement when seeing right-skew Z-curve

https://zcurve.shinyapps.io/zcurve19/

Selection procedure (Hedges-G)

Funnel Plot (Trim and Fill Method)

For a comprehensive review of publication bias, highly recommend: Doing Meta Analysis in R (Harrer et al.)

https://bookdown.org/MathiasHarrer/Doing_Meta_Analysis_in_R/pub-bias.html
Summary
Factors leading to replication failures

I. Uncommon
- Fraud

II. Common, but not primary culprit
- File-drawering failed studies
- Innocent Errors
- Insufficient power

III. Very common
- P-hacking

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant Simmons et al. 2011
Methods to tackle each potential problem

I. Uncommon
- Cataloguing publications that need to be retracted
- Disclosure of all data and materials
- Fraud detection flags

II. Common, but not primary culprit
- Pre-registration & Journal acceptance
- Statistical checks
- Power analysis

III. Very common
- Meta-Statistics
 (Pre-registration/Registered reports)

False-Positive Psychology – Undisclosed flexibility in data collection and analysis allows presenting anything as significant. Simmons et al. 2011
Summary

Multiple methods have emerged to deal with these problems but they still have limitations.

Registered reports and their increased acceptance along with well powered research designs based on curated findings (replicated) may be good path forward now.
Homework assignment discussion
Questions?